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Optical Scintillation;

A Survey of the Literature

Jurgen R, Meyer-Arendt and Constantinos B. Emmanuel

In this Technical Note, main emphasis is placed on providing

the reader with an exhaustive survey of the literature, cover-
ing the field of effects of atmospheric refraction on the propa-
gation of electromagnetic radiation at optical frequencies.

One may distinguish systematic, regular, or normal refraction
on the one side from random refraction on the other. The former
can be predicted theoretically, using various types of atmospheric
models; the latter requires analysis by statistical methods.

Numerous observational, experimental, and theoretical aspects
of random refraction, that is, of scintillation in its widest sense,
are discussed. The following topics are dealt with: refraction in
plane and in spherically stratified media, refractive index varia-
tions, radio refraction, scintillation as a function of aperture size,
zenith distance, site location, dispersion, and meteorological con-
ditions, the frequency spectrum of scintillation, terrestrial scin-
tillation, image distortion and contrast reduction, refraction and
diffraction theories of scintillation, autocorrelation analyses,
radio star scintillation, and coherence problems. Questions of
atmospheric scattering, absorption, and depolarization are
excluded. Finally, a brief review is given concerning newer
experimental methods for the observation, recording, and anal-
ysis of optical scintillation, including suggestions as to what
further theoretical and experimental efforts should be undertaken,

1. Introduction

All refraction in the atmosphere is based on the fact that the atmosphere of the
earth has an optical refractive index that is different from that of a vacuum and, further-
more, that the refractive index within the atmosphere also varies with space (and in part
with time). This accounts for a variety of refractive phenomena which for a thorough under-
standing, as we will see later, require refraction as well as diffraction theory. .

We divide refractive phenomena occurring in the atmosphere into two large groups,
depending on whether the effect is systematic or random (fig. 1). In a systematic effect we
assume that the refractive index of the air not only changes as a function of altitude, but that
it does so in a theoretically predictable fashion. Light coming from a distant source and

reaching the observer inside the atmospheric envelope of the earth will then not propagate

1. The research described in this Technical Note was sponsored by the U. S. Air Force
Electronic Systems Division, Laurence G. Hanscom Field, and the Mitre Corporation

Bedford, Massachusetts, under contract no, AFESD 63-311.
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Figure 1

Normal refraction and random refraction of light passing

through the atmosphere of the earth,



along a straight line, but in a curved path. This effect, called Regular Atmospheric Refraction,

is seen in a number of optical phenomena. A mirage, or fata morgana, and looming are two
common examples. Another example is the apparent flattening of the sun at sunrise or sunset,
an effect that is observed easily from the ground, but seems to be much enhanced when seen
from an orbiting satellite, .

In addition to such systematic refractive index variations and to the overall bending
of light bundles, there are small scale, random changes present associated with turbulence.
These are responsible for the (angular) scintillation of the stars, called twinkling. This is

the effect of Random Refraction. Note, however, that the term '""random'' is being used here

somewhat more generally than justified; if these inhomogeneities and the resulting optical
effects were completely random, no further conclusions could be drawn, which, as we will

see, is not the case,

2. Regular refraction

2.1. Refraction in a plane stratified medium

The refraction of light in a plane stratified medium has been discussed by numerous
authors. We mention only Humphreys [19407, Wolter [19567, Stirton [19597, Newcomb [19607,
Smart [19607, Wait [1962],and Chen [1964]. We follow, in part, Wolter [1956], and Baker,
Meyer-Arendt, and Herrick [19637], and assume that the refractive index n varies in one
dimension only, for instance in the vertical direction, so that n = f(z). Consider the medium
to be made up of a series of thin horizontal layers, the refractive index in each layer being
constant and highest in the layer near the bottom. Let the index in the bottom layer be called
nl, as in figure 2a, nZ in the next higher layer, n3 in the third layer, and so on. If we call
a5, the angle of incidence at the (1, 2) boundary and BIZ the angle of refraction at the same
boundary, we have for the transition from the bottom layer to the second layer

(1)

nl sin alz = nz sin 812 = nZ sin a23 "

A similar equation holds for light traveling in the opposite direction. If the light enters the

layered medium from an outside medium of index no and at an angle of incidence 6 , then
no sin § = n(z) sin a(z), (2)
where z is the height above ground. For a given outside medium and a given initial angle

of incidence, then,

n (z) sin a(z) = constant, (3)

2. As reported in 1963 by astronaut L. G. Cooper after his 22-orbit mission.
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Refraction of light at a boundary,



which means that, if n changes continually with height and monotonically, o will change as
well and the light bundle will proceed in a curved path. The shape of this path is a parabola
and, at least for linear variations, similar to the path of a projectile in a gravitational field,
a similarity which is by no means accidental. In the atmosphere of the earth, the refractive
index n decreases with height; therefore, the gradient vector Vn points downward, toward
the center of the earth, and light from a star or other celestial object is bent concavely toward
the earth.

Suppose the medium consists of an indefinite number of infinitely thin strata, each of
thickness dz. Let P be the point at which a ray intersects the boundary between any two
consecutive strata (fig. 2b). The angle of incidence at P is called 8+ T, B is the angle of
refraction (not shown), and T is the change of direction which the ray undergoes while passing
across the boundary. If we call n and n+ An the indices of refraction of the two boundary
layers, we have

(n+ An) sin (B+ T) = n sin B,

so that T, the angle of deflection or schlieren angle, is given as

T =22 wng. (4)
n

We now assume that all deviations are small so that the light path approximates part
of a circle. The schlieren angle T and the radius of curvature r of the light beam can then
be found from the following considerations: Assume that the light bundle is entering the med-
ium horizontally as shown in figure 3 and that it has a width Az. The refractive index of the
medium decreases in the + z direction, but it does not change in the direction of propagation
of the light. Wavefronts in the light bundle are represented by dashed lines, If there are m
wavefronts inside the area shown, the arc representing the upper boundary will be

As = m)
and the lower boundary will be

As' = m)'.

If )\0 is the original wavelength of the light and n and n' are the refractive indices
of the medium at two points on the z axis, the lengths of the arcs limiting the field are given

by

Xo
AB = m) = m—h— (5)
d
an )‘0 )
As' = m)! = m— = As o (6)

The lengths of these arcs depend on the radius of curvature r and on the schlieren angle T
b
2 4 As = r T (7)
and

As' = (r - Az)T. (8)
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Deflection of light, entering from the left and

passing through a stratified medium.



Subtraction gives

As - As' = TAzZ.
Since
)\o )‘o n' - n
As-As':m——m—'=m)\ -
n o nn
and since
m X' = nas,
o
n' - n n
AS-AS':nAS(—;—nT'>=(l-;1—‘>AS, (9)
so that
1 n
vz (o) as
B D As
Az n' 5
An 1
= A_Z F as . (10)
For infinitesimally small changes of n, we have
T = L V n As.
n z

(11)

The radius of curvature

r of the bent light bundle is obtained by combining (6) and

(8) so that
As;:—, = {r=24Az2) T
Replacing As by (7) gives
n
r'r; = (r - Az) T,

and canceling T and solving for r yields

e (12)
1. n

—~ ()

If we denote by s the length measured along the (curved) path, then the radius of curvature
is given by the differential equation

— (14)
where ds is the element of length of the ray. The path of light in a nonhomogeneous medium

can also be derived from Fermat's principle. For details see the Appendix of Williams' report
no, 3 [1954 a.



We have, so far, followed a two-dimensional convention. Naturally, a light bundle has
depth and propagates in three-dimensional space, so that the optical path gradients describing
the schliere can point in any arbitraty direction in space. We consider separately the x, y, and

z components of any refractive gradient vector Yn. These are given as

dn 2 3n (15)

If a line is drawn through the gradient field so that along this line the rate of change of the
refractive index, dn/dL, is greatest, then the direction of dL must clearly lie in direction

of vn. The numerical value of dn/dL will then be equal to | Vn | ’

d_n> = | vn |
dL / max :

If we choose instead to move in a direction perpendicular to vn, the cosine of the angle sub-
tended by the direction of motion and the gradient vector will be zero and we find that dn/dL =
0 or n = constant,

For any arbitrary orientation in three-dimensional space, the schlieren angle will be,

following (11),

_ 1 7~ 23n ~0n | A 31 N
lTl_n<x +yay+ZBZ>As
(16)

:l va ° As .
n

For light propagating along the x axis, it is sufficient to resolve T into two components, T
and Ty > These are covariant; they can be obtained by rotating the coordinate system about

the x axis. Therefore,

T ¢ vV nAs; T = A gnas. (17)
y n vy z n =z

These two component angles are found, following Wolter [1956], to a first approximation by

integration over the thickness x of the medium:

xo a
T = f l = dx
y 0 n 3y o
and (18)
& I )
T o= f = £ ax_ .
z 0 n 3z o

2.2. Refraction in a spherically stratified medium

At larger zenith distances, the atmosphere can no longer be considered stratified in
plane layers. Spherically stratified media, in general, may be either of rotational symmetry
with respect to one plane, like a cylinder, or they may be rotationally symmetric to any plane,

such as a sphere.
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Figure 4

Refractive gradient in a field of rotational symmetry.



We restrict our discussion to media in which the refractive index is highest at the
center, gradually and monotonically decreasing toward the periphery and to true refraction
phenomena. That is, we exclude scatter, which, among other causes, may also contribute
to the bending of a light beam. For further details on the theory of propagation of electro-
magnetic waves through stratified media of rotational symmetry see Baker [1927], Sweer
(19387, Humphreys [1940], Brocks [1949], Liepmann [19527, Hanson [1953, 19587,
Sommerfeld [1954] Williams[1954a], Stirton [1959], Newcomb [19607, Smart [1960],
Mahan [19627], Wait [19627, and Lawrence, Little, and Chivers [1964]7.

Let us assume, as stated before, that the refractive index is linearly and inversely
proportional to the radius, n < 1/r, so that the refractive index gradient Vn will coincide
with any one radius. Further assume that the field is rotationally symmetrical with respect
to the y axis (fig. 4). Thus,the inhomogeneity has the shape of a cylinder and has refractive
indices which are a function of the radius only so that n = n(r). Since the cylinder axis lies

in the y-direction,

r = x2 + zZ
and
dn dn
—_— = ¥ = e— ==
dz zn dr T (19)

For a light ray passing through the medium at a distance z from the cylinder axis, the

schlieren angle, following Wolter [1956], will be

=22 P L ax. (20)

In a field of spherical rotational symmetry, all points of equal distance from a point
of origin have the same refractive index. Therefore, rotational symmetry not only exists for
the y axis, but for the x and z axes as well. Hence, any cross section through the center
contains the characteristics of the whole field. The evaluation of just one cross-section,
therefore, suffices and is representative of the whole field.

We had mentioned before the equation of a curved ray in a field of non-uniform and
monotonically changing refractivity

rn sino = constant, (21)

where o is the angle subtended by the refractive gradient vector Vn and the tangent at a
point P on the ray. Depending on the variations of n, the ray can follow a variety of tra-
jectories., Since

| on | sin a = s,
where s is the distance from the center of the sphere to the tangent, (21) can be written as

rn sin ¢ = ns = constant, (22)

which is called Bouguer's formula.

10



Figure 5

Apparent (¢) and true zenith distance (Zo) of an object at

finite distance from the earth. Note definition of angle §&.

11



Let us consider in more detail the refraction of light through the atmosphere, taking

3
into account only large-scale variations.” We assume first, that the atmosphere is made up
of thin spherical layers which are concentric to the earth's surface. Let Zo denote the
angle of incidence, at the uppermost boundary of the atmosphere (the fictitious boundary

beyond which no significant refraction takes place), of a ray from a star that finally reaches

an observer at the surface of the earth. Then Z0 is called the true zenith distance of the
star, the true zenith distance being defined as the angle which light from the star makes with
the vertical of the observer's station before it enters the atmosphere. If there were no
atmospheric refraction, the object (here at a finite distance) would be seen by the observer
in the direction OP (fig. 5).

If n, is the refractive index in the uppermost layer and n, the index near the

surface of the earth, then

n sin Z = n_ sin “
o °F o e ¢
But no = 1, so that

sin Zo = B, sin C, (23)

where ( is called the observed zenith distance. The observed or apparent zenith distance of

a celestial object is that of a light ray coming from the object when it reaches the observer.
Note that the observed zenith distance is always less than the true zenith distance. The angle

Zo - ( is called terrestrial or atmospheric refraction,4 denoted R. Then

sin ((+R) = n, sin (

G
or
sin ( cos R + cos ( sin R = nG sin C .
Now R is a small angle and we can write cos R = 1 and sin R = R (R being expressed
in radians). Thus
sin { + R cos C:nGsinC

or

R = (nG -1) tan C . (24)

3. Small-scale variations, which may also be called micro-structure of the atmosphere, are
considered those which are due to random variations of the refractive index. These will
be discussed later.

4, Since this effect is by no means restricted to the planet earth, the term ''atmospheric' is
preferred. Note also that calling R "angle of refraction' is misleading since this term,
in geometric optics, is commonly assigned to the angle subtended by a refracted ray and

the normal to the boundary at the point of refraction.

12



Figure 6

Refraction of light in a spherical model.
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We see, thus, that at least near the zenith, the atmospheric refraction is propor-
tional to the tangent of the observed zenith distance. For an apparent zenith distance of
C = 45°, term R is called the '"constant of mean atmospheric refraction', which has an
approximate value of

R ~ 58".2 tan (.

Bouguer's formula describes, at least approximately, the paths of light rays and
radio waves in the atmosphere. On the horizon the deviation of light due to atmospheric
refraction amounts to about half a degree, the angular diameter of the sun. Thus at sunset,
the sun is seen still above the horizon when, in the absence of atmospheric refraction it
would have just disappeared below it. Another example of a rotationally symmetrical non-
uniform medium is the lens in the human eye the refractive index of which is higher at the
center than at the periphery.

If (r, 6) are the polar coordinates of a plane curve, then angle Z0 between the

radius vector at a point P on the curve and the tangent to the light ray at P (fig. 6) is

given by
: r (6)
sin Z . (25)
2 d 2
[ @ ()
It follows that
dr r 2 2 2
TEE T A./n r - k i (26)

where k is a constant, The equation of rays in a medium of spherical symmetry may there-

fore be written in the form
r
dr
0 = k J‘ . (27)
: 2 A/nz r2 - k2

Smart [1931] has shown that if the refractive index of the atmosphere is a function
only of the height z above a spherical earth, then Snell's law can be adapted to a spherically

stratified atmosphere and be written as

nr sin Z = n.,r cos ¢ . (28)
o o

G

Here n is the refractive index at distance r from the center of the earth, nG is the refrac-
tive index at the ground at a distance r, from the center of the-earth, ¢ is the elevation
angle, and Z0 is the angle subtended by the radius vector and the tangent to the light ray,
shown before in figure 6.

Let C in figure 6 be the center of the earth, O the observer, and OZ the

direction of his zenith., Light coming from a star will assume a curved path and will lie in

a plane determined by the incident ray and the normal at point P to the surface of the earth.




The true zenith distance Zo of the star at P follows from Snell's law as
n sin Zo = n sin ¢, (29)

where n and n, are the refractive indices just outside and inside the spherical shell given

by point P. In the triangle CP'P, we see from the law of sines that

sin ¢ _ sin ¥y
CP! CP

Combining these last two equations gives

n . .
sin ¢ = =5 sin Z = = CP!?
n o a——
b CP
so that
e —~
. _ " s
n CP sin Zo n CP' sin ¥
=mn, 1 sin C , (30)

where r, is the radius of the earth. This means that, for any rotationally symmetrical
system, the product of the refractive index, the radius of curvature of the layer boundary,
and the sine of the angle of incidence is a constant for each of the (hypothetical and infinites-

imally thin) layers, Differentiation, following Valentiner [1901 1 and Mahan [19627, gives

A% = -munZ B _png & (31)
(e} [e] n o b o

The increase in the angle of incidence Zo in going from one layer boundary to the next higher
boundary is then made up of a positive part due to the deviation produced by the atmospheric
refraction and a negative part due to the rotation of the radius in going from one surface to a
higher surface. If we now impose limits corresponding to the complete ray path from the
earth out to the star, we see that the atmospheric refraction R at point P introduced by

the atmosphere between the star and the observer is

R =2 -¢

n, r sin
L - (32)

n
:-6+J;GJ 2 "

2 2 2 .
ng (ro+z) - n_, r sin (

This equation is the refraction integral in its most general form, in which the object and the
observer can be at any arbitrary height z above the surface of the earth. For any arbitrary
apparent zenith distance (, the atmospheric refraction R depends on the refractive index
n_ at the position of the observer, on how the refractive index changes with the height above

G

the earth, on the refractive index n_ at position P, and on angle § (fig. 5) which represents

P

15



the angular distance between the apparent and the true direction of point O on the earth as
seen from the star.
The problem is much simplified if the celestial object is at a distance much larger

than the radius of the earth so that the refractive index in the vicinity of the object is unity and

if § << 1°. Then

n n. ¥ sin (
R=[© L & (33)

1 n (ro + z)2 - nGZ roZ sinZ C -

This is the general refraction integral derived independently by Newton, Bouguer,
and Simpson [Mahan, 19627]. This form of the refraction integral has served as the fundamen-
tal equation from which esser_xtially all the theories of astronomical refraction have been
derived. In order to determine R for a given apparent zenith distance ( , one needs to know
only the refractive index at the position of the observer and how it changes with height or,
more precisely, with pressure, density, temperature, and relative humidity of the air. These

changes and related problems will be discussed in the next Chapter.

2.3. Optical refractive index and refractive index variations

The refractive index in a vacuum, by convention, is set equal to unity. All material
media, then, independent of whether they are solids, liquids, or gases, will have indices of
refraction greater than unity.

According to elementary physics, the velocity v at which monochromatic light is
propagated in an homogeneous, isotropic, nonconducting medium is

v = =, (34)

where c is the velocity of light in free space and n is the index of refraction of the medium.
For a gas, the refractive index is proportional to the density p of the gas. This is

expressed by the Gladstone-Dale relation
n -1 = k p (35)

where k is a constant, depending on the wavelength of the light, Another relationship is

given by the Lorentz-Lorenz formula,

nz-l

—3 ——— = constant. (36)
(n” + 2) p
The refractive index also depends on the pressure and temperature of the gas:
= E
n =1+ k2 T * (37)

Here k2 is another constant.
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For convenience, frequently a scaled-up value called refractivity or refractive

modulus, denoted by N, is used:

N=(n-1 x 10°, (38)
For a vacuum, N = 0. At optical wavelengths,
N ~ 79 %, (394)

where the pressure p is given in millibar and the temperature T in °K. In units of milli-

meters, Hg’ we have

N = 105PT— " (39B)

Barrell and Sears [19407] have deduced the relation

p(l+8.. p)
N § R, emermt. (40)

3 l+a T
where k_ is a constant that depends on the wavelength, BT depends on the compressibility
of the air, and a is the theoretical expansion constant for a perfect gas (a = 0.003661).
The value of BT was found to depend linearly on T for temperatures from at least 10° to
30° C.
The local refractive index gradient is proportional to a coefficient K, which in turn,

following Brocks [19507, is given by
K = 5,032 (3.42 + >=)sin = K sin C . (41)

TZ 3z

The value of 5.03 is a constant which depends on altitude, latitude, and time and 3. 42 is the
relation between the gravitational constant and the gas constant (and a function of location),
p is the air pressure in millibar, T the temperature in °K, 3T/dz is the vertical air
temperature gradient measured in °C/100 meter and considered negative when decreasing

with increasing height, and ( is the observed zenith distance.

5. In this Technical Note, most dimensions will be given in metric units.

1 meter = 39,3700 inch = 3,281 ft.

1 kilometer = 3281 ft. = 0.62137 mile
1 ft. = 0.30480 m.

1 mile = 1,60935 km.

For other values, consult a conversion table.
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Near the ground, K depends primarily on 3T/3z . It vanishes for a temperature
gradient of - 3.42°C/100 m [Brocks,1950]. For higher values, K becomes negative, that
is, the light ray will be bent concavely upward, opposite to the curvature of the surface of the
earth, For temperature gradients less than - 3.42°C/100 m and for temperatures which
increase with height, the refraction coefficient becomes positive and the light will be bent in
the same sense as the earth's surface,

In more general terms, we have, following Brocks [1952],

b o

5 - BB
K = - 3z sin ¢, (42)

where E. is the radius of the earth and ( the zenith distance. For nearly horizontal rays,

we have
N p 3T de
°1 Tooo * 2 Tooo 23z T 3 3z ¢ (43)
where e is the humidity, or partial water vapor pressure, of the gas. The constants C 2 Sy
and <, depend primarily on the air temperature, and only to a much smaller degree do they

depend on the vapor pressure,
The connection between variations of refractive index and temperature is given by
a simple formula, following van Isacker [1954], which relates the standard deviations O’n

of the refractive index and of the temperature OT , at the 10 km level, by

-5
. 6.8 x 10 P N -7
o, TZ GT ~ 4x10 Ope

Humidity, in the range of optical frequencies, has a rather small influence on the
density and the refractive index of air. At radio frequencies, this influence is much greater
and, in fact, forms the basis of water vapor determinations by radio refractometry.

In terms of pressure, temperature, and humidity, the density p of a gas is given
by

= =2 (1 + 03rr 2y (44)
= To ’ p

where Q is the gas constant. The refractive index, following Kazansky [1959], is

no= 1 % 10485 x 10°° —-fl’,— (1-0.132 E), (45A)

where p and e are in mm Hg. In units of mb, we have

e

n= 1+ 0787 x 1008 & (1 - 0.132 p). (45B)

T

Humidity affects the refractive index in two ways: indirectly, by way of density as just shown,

and directly, due to the difference in the light refracting properties of dry air and water vapor.
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In general, the partial pressure of water vapor is small. At 20°C, the water vapor
pressure is 17. 5 mm Hg. With a relative humidity of 50 per cent, the partial vapor pressure
is 8.8 mm Hg or about 1 per cent of the total pressure at standard atmospheric pressure, a
value which would require a correction of the refractivity by 0.12 per cent. At high moisture
contents, the error will be larger and could mean, for geodetic purposes, errors of the order
of several seconds of arc. Techniques of humidity determinations have been described by
Westwater [19467, Elsner [1955], and Gerrard [19617. Gutnick [19627] has listed the mean
atmospheric moisture profiles up to an altitude of 31 km.

The relative importance of temperature and water vapor pressure for the refractive
index of air can be obtained from a ratio of the partial derivatives of the index of refraction
with respect to each of these two variables. Calculation shows that a 1°C change in tempera-
ture will produce a change in refractive index approximately equal to the change produced by a
28-mb change in vapor pressure,.

The composition of the air, likewise, has a very small effect on its refractive prop-

erties. Williams [19537, using refractive index values from the Handbook of Chemistry and
Physics, obtained a variance of about 2 x 10-16, so that the standard deviation of the refrac-
tive index is about 1.4 x 10-8. Carbon dioxide is perhaps the only compound that might con-
tribute. The COZ content of the atmosphere varies as a function of time and location. The
yearly increase in refractive index, due to an increase in COZ content, is of the order of
10_10. The CO2 content over land is higher than over ocean areas, increasing the refractive
index by about 6 x 10_8. Ozone also has some influence. All of these variations, however,
are so small that usually they can be neglected. A detailed discussion of the composition of
the atmosphere is found in the Pittsburgh University reports [1952-537,

Essen [1953] has determined the refractive indices of water vapor, air, O_, N

2 2
DZ' and He. A complex formula, containing not only the wavelength but also temperature,

) sz

atmospheric pressure, and concentration of water vapor and of carbon dioxide, has been given
by Masui [195771.

The best value used currently for the refractive index of air at p = 760 mm, T =
0°C, and )\ = 5455 A (about the center of the visible spectrum) is, according to Stirton
[1959],

n = 1+ 292.44 x 10°°, (46)

The preceding discussion has shown that the atmosphere has a variable refractive

index which is a function of space (x,y, z) and time (t), so that
n = n+ An (x,y,2,t). (47)

At optical wavelengths, the fluctuating part An (x,vy, z,t) is of the order of 10_6 for tempera-
ture changes of AT = 1°C., The average index n also is not constant, but varies slowly

depending on the prevalent meteorological conditions. In contrast, An varies rapidly.
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These small-scale fluctuations are the ones which are responsible for scintillation. They
will be discussed in detail later in this Technical Note.

The term dispersion denotes the fact that the magnitude of the refraction of light is
a function of wavelength. According to Barrell and Sears [19407, . and Williams [1953], the

refractive index n of air for monochromatic light of frequency v is given by

2 k
1 A =1 i
= |2 = E - (48)

where p is the density of the air, the Vi are the resonance frequencies, and the ki are
constants. This equation is similar to the general dispersion equation as it occurs in the
Lorentz theory of electrons-and is valid for frequencies not too close to the resonance frequen-
cies of the various component gases in air. These frequencies are marked by absorption
bands in the air spectrum.

Considerable effort has been made to approximate the factual refractive properties

of the atmosphere by theoretical models. In about all cases the model atmosphere is assumed

to be spherically stratified. A spherical model derived by Lord Rayleigh as early as 1893 is
satisfactory for many purposes but does not account for very small elevation angles (for
details see Humphreys [19407). Harzer [1922-24 ] has developed a theory of astronomical
refraction which for the first time was based on meteorological measurements, The main
point in Harzer's theory is that, if one knew the average temperature and the partial pressure
of each of the gases including water vapor at all levels in the atmosphere, one can compute
the refractive index as a function of height throughout the atmosphere. Harzer did this,
through 61 assumed boundary layers, up to a height of 84 km, beyond which the deviations
were reduced to less than 1/1000 of a second of arc.

Further refinements were made by Wiinschmann [1931], who compared these compu-
tational data with results derived from other theories. Wiinschmann also took into account
large temperature gradients over cities and deviations due to climatic and other meteoro-
logical factors.

Certain atmospheric models are based on the concept of the equivalent or effective
earth radius which has been found useful in radio propagation. In others, bending of the rays
is compensated for by assuming a distorted space where the light travels along straight lines
but where the coordinates have been modified.

Extensive work on theoretical models of the atmosphere which cannot be reviewed
here in more detail has been carried out by Willis [19411, who has computed astronomical

refraction, taking into account pressure, humidity, gravity, height, wavelength, and other

6. Socher [19517 has recalculated, and given some corrections of, the refraction constants

for astronomical use published by Barrell -~ Sears in 1939.
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Table I.

Astronomical Refraction (from Dietze 1957).

Apparent elevation Astronomical Apparent elevation Astronomical
angle refraction angle refraction
3" 18.2° 10° 5,31
2.5° 16.0' 11° 4.8
3° 14, 3" 12° 4.6
3,5° 12. 8" 14° 3.8
4° 11,6 16° 3.3
4,5° 10.7' 18° 2.9
5° 9.8 20° 2.6
5.5° 9.0 25° 2.0
6° 8.4 30° 1.7
6.5° 7.8 40° 1.2
2 7.3 50° 0.8
7.5° 6.9 60° 0.6
8° 6.5 70° 0.4
8.5° 6.1 80° 0.2
9° 5.8 90° 0.0
9.5° 5,5
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Refraction corrections 8¢ as functions of height for various
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parameters. Hagihara [1936] and Sugawa [1955] have computed astronomical refraction

from meteorological measurements. Further results published are known as the U.S. Stand-
ard Atmosphere [ Hess, 1959], the WADC 1952 model atmosphere, the model atmosphere
based on the Rocket Panel data, 1952, the ARDC model atmosphere [Minzner and Ripley,
19567, and as the ICAO standard atmosphere. Other reports are those by Hanson [1953, 19587,
Dubin [1954], Williams [1954 a, b], Gerrard [1961], Mahan [19627], Sperry Gyroscope Com-
pany [19627, Brocks [19637 and Henderson [1963]. Extensive tables are found in Gifford
[19227, Haurwitz [1941], Geiger [1957], and Dietze [19577] (see Table I).

Saunders [1963 Thas computed and tabulated variations with altitude of the density of
the atmosphere. Refraction angles are obtained as functions of the altitude and of the apparent
zenith distance of a luminous source. At large altitudes and at zenith distances up to 86°,
these values agree with Bessel's astronomical values, the maximum discrepancy being 2 out
of 726 sec of arc.

Stirton [19597] has published a set of useful formulas which are particularly helpful
for use with digital computers. An illustrative plot of the refraction correction &¢ as a
function of height for various apparent elevation angles € derived with the help of these
formulas, is shown in figure 7. (The refraction correction &¢ is the angle between the
apparent ray path and the ray path outside of the effective atmosphere, T E r, + 100 km.)

As we see, extensive work has been done in this area. However, any theory is
bound to be somewhat deficient until the influence of horizontal refractive gradients is taken
into account as well, True, these horizontal gradients are much smaller than vertical grad-
ients, but explicit solutions of the equations of a ray path through a model atmosphere can be
obtained only under restrictive assumptions as long as the theoretical predictions are not
supplemented by empirical observations. This argument will be discussed further in Chapter
3.18.

2.4. Radio refraction

The refraction of centimeter and radio waves passing through the atmosphere has
been the subject of numerous investigations. We discuss this subject here only insofar as it
is relevant to the optical problem on hand.

In the temperature range from -50° to +40°C, the refractive index n for radio
waves in the centimeter range can be expressed with negligible error as a function of the
pressure p in the atmosphere, the absolute temperature T, and the water vapor pressure
e as

-6 P e
n-1=10 a3+ 520, (48A)
( T T2>

For the radio refractivity [defined as before as N = (n - 1) x 1061 we have
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Nefo-1320° =a £ &b -2—

7.6 -1P,— + 3.73 x 100 =, (48B)

2
T

where a and b are constants which have the numerical values shown, p is the total atmos-
pheric pressure in millibars, T is the absolute temperature in degrees Kelvin, and e the
partial water vapor pressure or relative humidity, also expressed in millibars. This equation,
in this form, had been originally derived by Schulkin [19527. Other authors who used this and
similar relationships were Essen and Froome [19517, Birnbaum and Chatterjee [1952],
Harrison and Williams [1955], J. R. Williams [1955-f], Bean and Cahoon [1957], N. R.
Williams [1959], Bean [1960], Bean and Horn [1961], Tatarski [1961], McGavin [1962],
Bean and McGavin[ 1963a], Norton [19637], and others. Gardiner [1964]has summarized the
bending of radarbeams in the lower atmosphere, also giving numerous equations, tables,
correction curves and nomograms.

One sees that the refractivity is composed of two terms7, a dry term D which for
standard conditions is about (77. 6p)/T A 280 and a wet term W, or (3,73 x 105 e)/T'2 ~ 40.
Each term can be considered separately as a function of height. The first term applies to
optical as well as to radio frequencies; the second, or explicit water-vapor, term is required
only at radio frequencies. The refractivity equation is frequently written in the equivalent
form

N = (ou-810° = —7—7-'1,—6 (p + 4.81 x 10° eT). (48C)

Another approach is to specify atmospheric refraction in terms of the angle through
which a radio ray turns as it passes through the atmosphere. This angle, called bending and
designated T, is the angle subtended by the two tangents to the ray at the two points under
consideration and is essentially identical with the schlieren angle. The bending Tl. 2 of a
radio ray passing between two layers in the atmosphere which have indices of refraction n,

and n, can be derived from Snell's law for a spherically stratified atmosphere,

n, r, cos g, = n, r, cOS g, (49)

7. The more complete equation, according to Harrison and Williams [19557 and Bean [1962]
= N=(n-110"=77.6 B4+ 72 5+ 3.75x10° =,
3 T 2
T
Since the second term on the right-hand side of this equation, ordinarily, is about 1% of the
third term, the two-term expression given before is sufficient for most purposes. It gives
the values of N to within 0.02% of the three-term equation for the temperature range of -50°

to +40°C. The relative contributions of the first and third terms are approximately in the

ratio of one to e/60, with e measured in millibars,
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where €0 €, are the elevation angles at different heights above the ground. Smart [1931]

has shown that

dr B rdi N
- ctg ¢ = . = dé
and
d
dt = -2 ctg €. (50)
n
Integration gives

n
2 dn

Tl,Z ~ I -y ctg ¢, (51)
™

where ¢ is the angle of elevation subtended by the tangent to the radio ray and the tangent to
a sphere concentric with the earth's surface, The bending T , by definition, is called posi-
tive when downwards [Bean and Thayer, 1959c; Bean, 1960, 19627.

Model atmospheres for radio refraction. The principal difference between light-

optical and radio refraction is the by far larger contribution of water vapor to the refractive
index of air at radio frequencies. Otherwise the same reasons, and restrictions, govern the
use of atmospheric models for a prediction of radio ray bending.

Still, the assumption is made that the atmosphere is horizontally homogeneous. In
fact, Bean and Cahoon [1959] found that azimuthal, or horizontal, bending at heights greater
than one kilometer above the ground is almost absent. Even in air masses near weather
fronts and land-sea interfaces where horizontal bending would likely be most pronounced,
the effects were rather small and, in fact, essentially negligible for all except the lowest
elevation angles (¢ < 2°).

After Schulkin's [1952] derivation of the fundamental radio refraction equation, it
has become almost customary to present the refractivity N in terms of an ""effective earth

radius'" which differs from the true radius by a factor k. For low angles of elevation,

kK = ———=5—": (52)

H
(%
N B

where r' is the local earth radius, often assumed to be 6380 km. Normally, 3n/3z is nega-

6km-l. Furthermore, if we assume that this gradient is

tive and of the order of -40 x 10
constant with height, a numerical value of k = 4/3 is obtained [for a discussion see Bean
and Thayer, 1959c; Bean, 1962].

Further work has shown, however, that the 4/3 earth model has serious short-
comings especially with regard to the assumption that 3n/3z is constant with height, which
would mean that n decreases linearly with height. In fact, at low altitudes, up to about

16 km, the 4/3 model gives too little bending, while at high altitudes it gives too much. A

better representation is given by an exponential reference atmosphere [Bean and Gallet,

25



1959; Bean and Thayer, 1959; Bean, 1961; and Thayer, 19617. Here the radio refractivity

N, as a function of height z, can be predicted from an equation

N(z) = [n(z) - 1] 106 = Do exp {-Hi}+wo exp {--ﬁ—}. (53)
d w

The first term on the right-hand side of this equation, D, is the component of the refractivity
due to oxygen,and the second term, W, is the water vapor component. The values of the dry
and wet components at the earth's surface are D0 and Wo. The scale heights of D and W,

respectively, are H,k and Hw. The term scale height is defined as the height at which the

d
magnitude of a particular atmospheric parameter has decreased to 1/e of its surface value.
The scale heights Hd and HW are sensitive indicators of climatic differences, and maps of
each are given for the United States for both summer and winter. Bean [1961] has listed

typical values for arctic, temperate, and tropical locations (table 2).

Table 2. Typical average values of the dry and wet components of

the radio refractivity N [after Bean, 19617.

Climate D w N
o o
Arctic 332.0 0.8 332.8
Temperate 266.1 58.5 324.6
Tropic 259.4 111.9 371.3

One sees that the contribution of the wet term Wo to the total value of N is nearly
negligible in the arctic, but becomes greater as one passes from temperate to tropical cli-
mates., This is easily understood if we consider that the higher temperatures of the temper -
ate and tropical climates, as compared with the arctic, provide a greater water vapor capac-
ity, with the result that W0 will contribute more to the total N,

Further progress has been made by finding that there exists a relationship, to a very
good degree of approximation, between the variation of n with height above the surface and

the surface value n_. of the radio refractive index [Bean and Thayer, 1959a,b; Bean, 1960;

Bean and Thayer, 1‘?63; 1liff and Holt, 1963]. From there, an exponential model of the atmos-
phere has been developed and adopted for use within the National Bureau of Standards which

is known as the Central Radio Propagation Laboratory (CRPL) Exponential Reference Atmos-
phere. The reference atmosphere is a function of a single, easily measured variable, NG’

the surface value of the radio refractivity, and provides 2 useful solution to the problem of

the prediction of atmospheric radio refraction. The accuracy of this model for predicting
average radio refraction effects is illustrated by figure 8, where values of angular ray bending
are plotted against height for rays starting at zero elevation angle. Further comparisons with

precisely determined absolute radio refractive indices in the lower atmosphere have been made

by Bean and Thayer [19637.
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The total bending T for a radio wave passing through the atmosphere is linearly
related to the surface value n. of the refractive index of the atmosphere and to the initial
elevation angle €, by

T = a(eo) + b(eo) N (54)

G-
This holds for €, > 10 milliradians and average meteorological conditions in a temperate
climate. We know that 95 per cent of the total bending occurs in the first 10 km above the
earth's surface, that 60 per cent occurs in the first 1 km, and that at least 30 per cent is
accomplished in the first 100 meters of the atmosphere for a ray leaving the earth tangentially,
that is, where £, = 0.

For very small initial elevation angles, say €, <10 milliradians, the initial
gradient of the refractive index will have a predictably larger influence on bending. Thus,
whenever the magnitude of this initial gradient can be ascertained, it is desirable to make
use of this information in addition to the surface refractivity for predicting the bending.

Bean and Thayer [ 1959b, c] have developed a method for using this initial gradient information
for prediction and Bean, Thayer, and Cahoon [1960]have shown that the rms error in pre-
dicting T is reduced substantially by the use of the initial gradient in the first 100 meters

of the atmosphere [Norton, 19637.

Most of the preceding results are based on theoretical calculations. Fortunately,
there exist radio methods and equipment by means of which the radio refraction can easily
and directly be determined. Radio refractometers have been developed, for instance, by
Birnbaum [ 1950], Crain [1950, 1955], Crain and Deam [ 1952], and by Vetter and Thompson
[1962]; a radio sextant has been designed by the Collins Radio Company [ Anway, 1961, 1963;
Bean and Thayer, 1963]. A review article covering techniques for measuring the radio
refractive index has been written by McGavin [ 1962] . An analog computer for conveniently
solving the radio refractive index equation has been constructed by Johnson [ 1953]. The
principle of most radio refractometers is based on the fact that the resonant microwave
cavity of fixed dimensions is determined by the refractive index of the material contained
within the cavity, Consequently, a measurement of the resonant frequency can be considered

a measurement of the refractive index of the sample.

3. Random refraction

3.1. Light-optical scintillation, definitions

When a star is observed with the unaided eye or with a telescope of small aperture,

the image of the star, instead of being steady, appears to continuously dance about and to

fluctuate in intensity. These variations, frequently, are called twinkling or ''scintillation''.

The term scintillation, unfortunately, is used in different ways. Its use should be restricted
to describe only a certain class of effects which will be defined shortly. So much, at least,
is generally agreed upon: Scintillationand similar terms are reserved for variations on a

fairly short term basis.
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All of these phenomena are due to irregularities in the structure of the atmosphere,
of various dimensions and at various heights above the ground. These irregularities, regard-
less of how they produce the optical effects to be discussed, hamper accurate observations of,
and measurements on, stars and other celestial objects. They may make the image vary in
brightness, called twinkling; they may displace the image from its '"normal' position, an

effect called '"quivering'; they may smear out the diffraction image of a star into an irregular

""patch or '"tremor disk'; or a point image may ''dance about", ''wander', 'pulsate'; or it may
show 'focus drift'", "image motion'", "shimmer', and "atmospheric boil". The color of the
image may continuously vary, an effect called "'spectral drift" or "color scintillation'. Small

details of a more extended object may become lost, due to "optical haze', 'blur', '"boil", or
"'distortion'. All of these contribute to what is called "seeing", a condition which limits many
astronomical observations and which by no means is synonymous with scintillation in its more
restricted sense.

The term ''seeing", likewise, is not well defined. Some authors call seeing the
overall effect of dancing, pulsation, and focus drift plus brightness and color scintillation.
Others mean by seeing just changes in the position, shape, or size of a star, or of a detail
in an extended object, and exclude all brightness variations as such. In some of the European
literature, seeing and scintillation are used synonymously. At least some correlation seems
to exist between them.

Image motion or dancing is defined as a continuous movement of a star image

about a mean point. Image motion is seen best through a telescope of small aperture (less

than 10 cm) and high magnification. With increasing aperture, the effect becomes less pro-
nounced. Continuous records of image motion can be obtained by means of an oscillograph
camera which allows 35mm film to be moved in the focal plane of a telescope and by inter-
posing a chopper in the light path [Gardiner and others, 1956].

Particularly slow oscillatory motions are called Wandering. Their period is of
the order of about one minute of time and the angular excursions about one or a few seconds
of arc Bchlesinger, 1927]. Wandering has been recorded even near the zenith and under good
seeing conditions. Dancing occurs at frequencies similar to those of scintillation and has an
amplitude which ranges from 1, for average seeing conditions, to 10 seconds of arc or more
at times of exceptionally poor seeing. It seems likely that all image motion, dancing as well
as wandering, in contrast to scintillation, arises from local, near-by turbulences. The
different frequencies seem to be a function of the size of the air masses or eddies intercepting
the path of light. Wandering may be due to large wedge-shaped air masses of a width of
perhaps 100 m. Dancing and pulsation (see later), on the other hand, probably have their
origin in small-scale turbulences of about 10 cm size.

Telescopes of large aperture do not show image motion. Instead, they give a time-
space integrated result of image motion so that an originally point-like star image is seen as

a diffuse, enlarged Tremor Disk. A tremor disk, needless to say, cannot be corrected by
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focusing; its presence is additional to any aberration which might be inherent in the instrument.
The diameter of the tremor disk gives a measure of the amplitude of image motion.

The term pulsation (or breathing) refers to a (fairly rapid) change of size of the
star image seen. It is due to a 'lens effect' of air masses drifting by close to the telescope
objective, continuously de-focusing and re-focusing the image seen in the eyepiece. Pulsation
occurs at about the same frequencies as scintillation and dancing. Slow expansion and con-
traction of a star image at frequencies comparable to those of wandering are called focus drift.

Scintillation in its strictest sense refers only to (rapid) fluctuations in intensity.

Image distortion is the integrated effect of image motion and pulsation involving

many points which form the details of an extended object. It is clear that if such points move
independently of, and out of phase with, one another, the details become blurred, lose contrast,
and cannot be distinctly recovered from the image.

The term seeing is used to mean the combined effect, and the degree, of the
continuous changing of position, shape, and size of an image, generally the image of a celes-
tial point object.

Shimmer is the tremulous appearance and apparent distortion and motion of an
object when seen, for instance, through a layer of air immediately above a heated surface.

Boiling refers to the combined effects of distortion, image motion, pulsation,
and contrast reduction, more specifically, it means the time-varying nonuniform illumination
in a larger spot image.

Actually, all of these effects are not as discrete as the above definitions seem to
imply. Instead, they follow each other gradually and frequently overlap. By simply looking
at a star, one will often be able to discern only brightness and color changes. Other phenom-
ena usually require photographic or photoelectric recording. We will show later that what
appears to be random refraction or scintillation, however, is often not as random as it might

seem; in fact, significant information can be retrieved from such fluctuations.
3.2. Stellar shadow bands

Light from a star does not uniformly illuminate the ground. Due to irregularities
in the atmosphere, plane wavefronts arriving from a distant star become corrugated and
create on the ground a mottled pattern of bright and dark areas, called stellar shadow bands.
Such bands are seen easily when a large white sheet is spread out on the ground. Generally,
the b;nds consist of an array of dark shadows, several centimeters wide, which change contin-
uously and move on, thus causing the familia.r8 twinkling of the stars. The velocity of motion

is around 1 meter/sec.

8. Seen already by Aristotle [384 - 322 B.C.], Tycho de Brahe, and Isaac Newton who des-
cribed the "tremulous motion of shadows cast from high towers and ...the twinkling of
fix'd stars'. Stellar shadow bands have been observed first by Kepler in 1602 who saw
them in the light from Venus falling on a white wall. Since then,these bands are sometimes

called Kepler's phenomenon,
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An extended source such as the sun does not produce shadow band patterns, just
as the sun or the planets generally do not seem to twinkle. This is because light from each
point in the extended source will traverse different inhomogeneities in the atmosphere and the
overall effect, therefore, will be an integration over many point sources scintillating out of
phase with one another. On the other hand, shadow bands can also be seen in the light from
the sun, for instance, for a few seconds immediately before and after the total stage of a
solar eclipse [Anderson, 1935; Wood, 19567. They can also be observed during a partial
solar eclipse when only a narrow segment of the sun remains unobscured, or when the sun
rises or sets behind a distant mountain range [Rozet, 1906]. Shadow patterns can also be
seen in the light from the moon when very small and from planets (as Kepler has observed)
and sometimes when a flare is dropped from a high-flying aircraft.

A convenient way to see the shadow bands is to point a telescope, best a reflector,
at a single star, to remove the eyepiece, and to look directly at the objective mirror. One
will then note, if the astronomical seeing is no better than fair, that a complex system of
parallel, more or less rectilinear shadows is moving in a direction normal to their lengths.
These shadows are the result of the refraction and diffraction of the star light passing through
inhomogeneities in the atmosphere,

Such patterns have been observed by numerous authors [ Pernter and Exner, 1922;
Gott, 1957] ; excellent photographs of them have been published by Gaviola [ 1949] , Bowen
[1950] , and by Mikesell, Hoag, and Hall [ 1951] . Gaviola has obtained his photographs using
a small camera of 75 cm focal length, placed about 30 cm inside the focal plane of a Casse-
grainian reflector of 150 cm focal length and focused on the main mirror. The patterns change
very rapidly. Gaviola estimates that any particular fine structure configuration lasts only
about 1/1000 to 1/100 of a second. Exposure times of 1/25 or 1/50 sec, as often used, are
too long.

The width of the bands is frequently not over 3 or 4 cm. Thus, it may easily
happen that one eye is in a dark, while the other is in a bright area at the same time. If we
look at a star, following Wood [1956] , with the eyes slightly converging by focusing on some
nearby object, a star may appear doubled and the two images will fluctuate incoherently.

More exact analyses require photoelectric means. In most cases, a photo detector,
together with a suitable aperture stop (pinhole), is placed in the focal plane of a telescope.

In this way, variations in light flux can easily be transformed into varying electric voltages

which can be recorded continuously and be subjected to statistical analysis.
3.3. Scintillation and seeing

Stellar scintillation, to a large degree, is independent of what is called Astronom -
ical Seeing. By the same measure, stellar image motion as such, although it enters into, is
but only part of seeing. We had defined seeing as the combined effect of continually changing

position, shape, and size of a stellar image.
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Scintillation alone does not influence the accurate determination of spatial position
of a celestial object as much as seeing does. These sidewise oscillations show why a conven-
tional photodetector (in particular, if a narrow aperture stop or pinhole is mounted in front of
it) usually is not a very useful means for measuring the degree of seeing. This is the more
unfortunate, for seeing often is a much more significant factor than scintillation when it comes
to selecting a site for high precision astronomical or tracking purposes.

A perfectly adjusted, high-quality telescope with an aperture of about 3 meter,
under perfect seeing conditions, should give star images of a diameter of about 0.04 seconds
of arc. In reality, the average star image diameter is about 2. 5 seconds of arc [ Baum, 1955] .
Such image, in addition, will move around, with good seeing conditions, at an amplitude of
about 6 sec of arc or approximately 3 x 10"5 radian. Under average seeing conditions, the
angular displacement of a star image is 10 sec of arc or approximately 5 x 10‘5 radian for
stars at the zenith and about 10-4 radian for stars at an elevation angle of ¢ = 30°.

The degree of seeing has since long been estimated by subjective methods. Although,
as we have seen, seeing is the integrated result of several parameters, many astronomers
use simple, one-parameter scales that run either from 1 to 5 or from 1 to 10, representing
by 1 the sharpest image and least image motiong. Category 3 inthe 1 - 5 scale means a
somewhat fuzzy image with at least one diffraction ring still visible and moderate motion of
less than 3 seconds of arc. All such scales of seeing [ see, for instance, Mikesell, 1955;
Baum, 1955; Tombaugh and Smith, 1958] , clearly depend to a great extent on subjective
estimates that are affected by the '"personal equation' of the observer. There are other sub-
jective methods in use as well. For instance, following Wimbush [ 1961] , the more rapidly
the stars appear to twinkle, or the smaller the zenith distance at which color or brightness
scintillation can be seen, the worse the seeing is likely to be.

Objective methods for the evaluation and classification of seeing conditions are,
for instance, the Pickering scale [ 1908] and Hosfeld's [1954] cinematographic Hartmann
tests. Another possibility is to determine the diameter of the tremor disk [ Anderson, 1942]
or to measure the lateral (sidewise) excursions of a star image. Seeing condition monitors
providing continuous records have been designed by several authors. The seeing monitor by
Bray, Loughhead, and Norton [1959] contains two photocells which receive signals from the
east and west limb of the sun. The photocells are adjusted so that with perfect seeing the
amount of light falling on each cell is constant. When the seeing is poor, the intensity
recorded by each cell fluctuates so that the output contains both a steady and an A.C. compon-
ent, the latter being a measure of the seeing. One of the instruments described by Giovanelli
[ 1962c] is likewise based on the stability of the image of the solar limb, the other on the

sharpness of the granulation of the sun,

9. Note that Wimbush [1961]uses 0 for very poor and 10 for perfect seeing.
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For routine measurements, the light from Polaris is used frequently; a number of
semi-automatic devices have been built based on this principle. They were used, for instance,
when a proper site was to be selected for the U. S. National Observatory on Kitt Peak [Meinel,
1958]. Photoelectric techniques also make possible to record scintillation in others but the
visible range of the spectrum; Paulson, Ellis, and Ginsburg [1962], for instance, found good
correlation between scintillation in the visible range and in the infrared,

DeGraffenried's [1963 b]astronomical seeing condition monitor (ASCM) contains a
two-dimensional array of optical fibers which is placed in the prime focus of a spherical
mirror of 30 cm aperture and 2.5 m focal length. The rear ends of the fibers are connected
to a set of 10 photomultiplier tubes, Proper circuits and display components give information
about the '""center of gravity' of the illuminated area, the standard deviation which is related
to the r.m. s. image spread, and the ratio of clarity of the atmosphere vs, image motion
and/or distortion which is a measure of the quality of seeing.

It is generally agreed that seeing, in contrast to scintillation, depends primarily
on local air disturbances near the telescope [ Kassander and co-workers, 1951; Liepmann,
1952; Scott, 1958; Menzel, 1962]. Three distinct regions causing seeing effects have been
distinguished. The first is the region close to the telescope, critical in particular for solar
observations where the instrument is subject to intense heating, Temperature changes will
cause expansion, or contraction, of parts of the telescope, and this may considerably shift
the telescope focus. Moreover, if the mirror material does not have a high thermal conduc-
tivity, different portions of it will change in temperature at significantly different rates, so
that unless the thermal expansion coefficient of the material is very small there will be an
appreciable distortion of the mirror surface with a consequent loss of image resolution
[Wimbush, 1961]. Sometimes it is advantageous to evacuate part of a system, for instance a
spectrograph connected to an astronomical telescope. Much sharper stellar spectra have been
obtained in this way [ McMath, 1955],

The second critical zone involves temperature convections close to, but outside of,
the instrument. The air layer just in front of the mirror of a large reflector is a potent source
of trouble [ Steavenson, 1955]. White paint, sometimes used for the telescope dome, depending
on the pigment contained in it, might be a black body in the infrared, just as snow is, and thus
make matters worse. Aluminum is generally best. Another cause can be the greater heat
capacity of the building housing the telescope, compared with that of the air. At night the
building cools more slowly than the air, giving rise to thermal convections which cause bad
seeing [Schmeidler, 1955], Following DeGraffenried [1963 b], "image motion and distortion
are caused by fragment parcels of cold air passing in front of the aperture. These fragments
have an apparent random distribution in time, length, and temperature difference, The resu‘lt-
ant will therefore execute random motion and random distortion... .'" In contrast, O'Connell
[ 1958] has found that the limb of the low sun can be boiling when the distant horizon (about

80 km away) is sharp and steady. This would indicate that there can be image motion even
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when the lower layers of the atmosphere have no appreciable effect on the seeing [ Wimbush,
1961].

The third zone is the higher atmosphere where a variety of meteorological condi-
tions, updrifts and the like, occur. The effect of moist air on seeing is generally overlooked.
While humidity has almost no influence on the refractive properties of the air, it gives strong
absorption in the infrared, thus producing a ''green house" effect which influences the seeing
[ Meinel, 1960].

Wimbush [1961] relates experiments made by Langley [1903],who tried everything
he could think of to keep the air in and around the telescope still and at a uniform temperature,
but this had very little effect on the seeing. Then he tried just the opposite and agitated the
air in the telescope with an electric fan. The result was a considerable improvement in image
resolution. This is in agreement with experimental findings by Ryznar [1963 a], who found
that the resolution over a 543 m long path was best under windy and cloudy conditions and
worst on clear nights,

Although it is questionable whether there is any correlation between seeing and
scintillation, attempts have been made to detect such relationships. Mikesell, Hoag, and
Hall [1951] found that when the seeing is good, the high frequency components of scintillation
are missing and the low frequency components are much less pronounced than they are under
bad seeing conditions. Mikesell [1955] came to the conclusion that the astronomical seeing
is roughly correlated with scintillation at frequencies between 10 and 150 Hz. More details
are found in publications by Stock and Keller [1960], Hynek, Woo, and White [1962], and in
the Proceedings of the Symposium on Solar Seeing held in Rome [1961].

Elaborate equipment has been developed to compensate, at least in part, for the
effects of poor seeing. One approach is to use shorter exposure times, either by employing
more sensitive photographic material or by means of image intensifiers or television tech-
niques [ DeWitt, Hardie, and Seyfert, 1957]. Another way is the use of guidance servo sys-
tems, usually photoelectric systems that compensate primarily for dancing. Guidance sys-
tems must be capable of tracking rapidly and accurately. Since fast tracking involves large
accelerations, it would be impractical to move a large mass such as the entire telescope.
Instead, it is much easier to center the star on a beam -splitting pyramid or on the axis of
rotation of a knife edge and then to move, by a servo system, only the photographic emulsion
or an auxiliary lens mounted in the path.

An eidophor is another kind of a seeing compensator. It is essentially a mirror
covered by a thin layer of oil. By conventional cathode ray techniques, electric charges are
deposited on the surface of the film which, proportional to the intensity of the incident light
and within a few milliseconds, becomes depressed in certain areas, thus compensating for
ray deviations produced by the dancing star image [Babcock, 1953]. Babcock [1958] has used
a thin, flexible film of low but finite electric conductivity. One side of the film is given a

reflecting coating, the other side carries a mosaic of isolated elements that are charged by a
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cathode ray tube to which the film is the window. The charges then produce electrostatic
forces which give rise to localized bending moments in the film and to corresponding defor -

mations, acting like an "optical feedback system'',

3.4. Physiological and psychological factors related to scintillation

Some authors have claimed that scintillation may, at least in part, be caused by
physiological or psychological factors inherent to the human observer. Hartridge and Weale
[1949] and Hartridge [1950], for instance, argue, on the basis of laboratory experiments,
that bright stars do not scintillate, while dim ones do. The image of a star will, they say,
due to refractive index changes in the atmosphere, continually shift on the eye's retina; hence,
if the star is not too bright, different receptor regions in the eye will successively be stimu-
lated. In case of a laboratory source that does not ""move'', the eye performs minute move-
ments which give rise to the scintillation effect. Hartridge and Weale conclude that while the
purely physiological explanation of the scintillation of stars appears to account for all the
observed facts, it does not rule out the possibility that true physical variations may also occur;
in other words, scintillation is claimed to be primarily a physiological phenomenon and the
atmosphere takes a secondary role,

Photographic observations by Gaviola [1949], photoelectric records by a great
many authors, and the fact that scintillation does vary significantly with the angle of elevation,
however, all indicate that the intensity of the light from a star received by the eye does in
fact vary, and hence that physiological factors cannot provide a complete explanation of the
phenomenon.

A somewhat different but related problem is the question to which degree a human
observer is able to point a telescope accurately at a target. When a telescope is pointed even
on a steady terrestrial object, the image formed by the objective and seen through the eye-
piece seems to oscillate constantly with respect to the cross hairs mounted in the focal plane
of the objective. Bringing the cross hairs into coincidence with the image is often a matter
of deciding upon the mean position of the image of the target and setting the cross hairs
thereon. The accuracy with which this can be done varies from observer to observer and,
in fact, can vary between the left eye and the right of the same observer. According to
Washer and Williams [1946], the average value of the probable error of a single setting is
about 0.62 sec of arc; it is not a function of the distance of the target. This obviously limits

the precision with which a telescope or other instrument can be pointed at a distant object.

3.5. Scintillation as a function of circular aperture size

In this chapter, we shall discuss only circular apertures, Rectangular or slit-like
apertures produce other phenomena in addition to those due to the reduction in aperture area,

These will be dealt with in Chapter 3.11.
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SCINTILLATION INDEX

Figure 9
Relation between telescope aperture and amplitude of
scintillation for various stars and elevation angles

[modified from Ellison and Seddon, 1952].
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Assume that a ground-based telescope has a small aperture of, say, 5 to 7 cm. When
placed in the region of moving stellar shadow bands, the aperture will receive at any instant of
time only narrow, almost parallel bundles of light, the direction of which varies as the shadow
band pattern moves past the aperture. Hence a sharp, or nearly sharp, but erratically moving
image of the star will be obtained. The peak-to-peak fluctuations of the signal as compared
to the mean light level may be of the order of 50 to 150 per cent for stars near the zenith and
increase to several hundred per cent for stars near the horizon. In order to retrieve all
information on the scintillation spectrum down to the smallest size of the scintillation-causing
turbulence elements, apertures as narrow as 3 to 5 cm are required.

On the other hand, with a sufficiently large aperture, the entire range of directions
of the light forming the shadow band pattern will be received simultaneously, the average
direction being identical with that of the undisturbed Bundle above the turbulent zone. Thus, a
telescope of large aperture will show less dancing and will give a steady, though blurred and
fuzzy image. The dancing of a point source, then, has changed into a diffuse tremor disk the
diameter of which can be used as a quantitative measure of the degree of image motion. This
shows that scintillation effects can be suppressed by using a larger aperture. The essentially
same effect is obtained by retaining a small aperture and averaging over an extended length of
time. The probability that the mean resulting from such space- or time-averaging is indeed
the true position of the star (excluding the effect of systematic refraction) can be increased at
will by making the aperture large enough or the time long enough [in this connection see
Hennig and Meyer-Arendt, 1963]. On the other hand, it will be clear that a short exposure,
that is, avoiding time averaging, cannot nullify the effect of space integration,

In quantitative terms, it has been found that the amplitude, or width, of the lateral
excursions shown by an otherwise distinct star image is inversely proportional to the diameter
of the aperture. This, however, seems to be true only within a given range of diameters.
Ellison and Seddon [1952], for instance, believe that this relationship does not hold for aper-
tures less than 7.5 cm in diameter. Below this limit, photomultiplier noise becomes pro-
hibitive and, more significant, the scintillation amplitude seems to reach a maximum or
saturation level. This suggests that the figure of 7.5 cm for the aperture is not accidentally
about the same as the widely accepted magnitude for the width of the shadow bands.

Numerical results from Ellison and Seddon's measurements are reproduced in fig-
ure 9. In this figure, the scintillation index is plotted vs. the aperture of the telescope. The
plots obtained for various stars and elevation angles show clearly the saturation or "integra-
tion' effect discussed before. Even with the smallest aperture used (7.5 cm), the amplitudes
never fall below about 30 per cent of the mean level; amplitude variations of 30 per cent or
more are often found associated with the most violent movements and boiling of the visual
image. Remarkable, and seen only with small apertures, are sudden flashes of increasing
light intensity, up to 400 per cent above the mean level (this corresponds to momentary

increases in brightness of 1 to 2 magnitudes) and having durations of about 1/100 of a second.
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These flashes are most pronounced at an aperture of 7.5 cm and suggest that at this aperture
the maximum amplitude of scintillation is reached. This is not definite, however, for at
smaller apertures the noise level is high and conclusive experiments have not been made as yet,

We see that larger apertures integrate over the width of at least several shadow bands
and smooth out the light variations. With very large apertures, of the order of about 250 cm,
scintillation, or better, dancing, according to Ellison and Seddon [1952], should be negligible.

Gardiner and co-workers [1956] are not as optimistic. They found that short term
excursions of the star images (dancing) with increasing aperture not only became more diffuse,
but sometimes multiple. At 60 cm aperture, as many as three simultaneous distinct images
were found often, and at 90 cm, sometimes five simultaneous distinct images could be seen.
This suggests that the atmospheric disturbances in question may have dimensions of the order
of 15 ... 20 centimeters.

How circular apertures of different size affect the frequency of scintillation has been
shown by Mikesell [1955]. With small apertures, the scintillation amplitude often appears
nearly constant at low frequencies. This is the aperture saturation effect described by Ellison
and Seddon [1952], and by Megaw [1954], discussed before. With larger apertures, scintilla-
tion at high frequencies will increasingly be lost. This again is an aperture smoothing effect.
By using a large aperture, therefore, one expects to obtain primarily low frequency data
which seem to be more clearly correlated to meteorological conditions. The scintillation
amplitude appears to vary inversely with the diameter of the telescope objective only at fre-
quencies around 40 Hz, at least within the range of 10 to 38 cm aperture diameter.

The distribution of the scintillation signal with respect to frequency - that is, its
Fourier spectrum - is another interesting parameter [Protheroe, 1961]. In general, for
stars near the zenith and for small apertures, the Fourier spectra tend to have constant
values at frequencies from zero to around 100 Hz, with decreasing values from there to about
500 to 1000 Hz, where the amplitude becomes zero. On the other hand, when larger apertures
are used, the flat part of the spectrum extends to only 10 to 50 Hz, and the zero point is
reached at anywhere from 100 to 500 Hz. The decrease in high-frequency components with
increase in aperture size is readily explained as an integrating effect across the aperture
[Protheroe, 1961]. We may say, in conclusion, that a larger aperture has two effects: it
smoothes out the scintillation, and it suppresses the higher frequencies of scintillation: a
finite aperture acts like a low-band-pass filter.

These results are in good agreement with theoretical conclusions reached by Tatarski
[1961] and Reiger [1962] and with experimental results obtained by Portman, Elder, Ryznar,
and Noble [1962].

The random arrival of photons from a star gives rise to fluctuations in the observed
light intensity at the focal plane which are called shot noise. Note, however, that the relative
importance of scintillation fluctuations and shot noise fluctuations does not depend on the size

of the aperture, It depends merely on the brightness of the star and on the optical efficiency
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Recordings of scintillation at different zenith distances [after Butler, 1954] .
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Figure 11
The scintillation amplitude of radio stars (normalized
to unity at the zenith) as a function of zenith distance,

After Briggs and Parkin [ 1963].

40



of the telescope and associated equipment, since increasing either of these increases the num-
ber of photons received per second and consequently reduces the ratio of the shot-noise ampli-
tude to the total light received, while at the same time leaving the corresponding ratio for the

scintillation unchanged [Stock and Keller, 1960].
3.6. Scintillation as a function of zenith distance

Since Ptolemy noticed that scintillation is more pronounced near the horizon that at
the zenith, this relationship is a well established fact. If we look at various stars in the night
sky, beginning at the horizon, we note that the degree of scintillation decreases as we approach
the zenithlo. Though often very little scintillation can be seen near the zenith, instruments
show that it is still present (fig. 10).

Some residual scintillation is always present, even at the zenith [Schlesinger, 1927;
Barocas and Withers, 1948]. Ellison and Seddon [1952] found 5 to 10 percent when recorded
with a large (90 cm) aperture telescope and concluded, in agreement with Kolchinski [ 1952,
1957], that probably there exists a simple proportionality between the amplitude of scintillation
and the secant of the zenith distance Zo. Siedentopf and Elsdsser [1954] and Siedentopf [1956],
however, concluded from measurements at the Jungfraujoch, Switzerland, at an altitude of
3600 m that the amplitude of dancing in fact seems to increase linearly with sec Zo' but that
the relation between the mean amplitude of brightness scintillation and sec Zo resembles a
saturation curve, the saturation of the high frequencies being more pronounced than that of the
low frequencies [Wimbush, 1961]. Mayer [1960] confirms that the relation of dancing with
zenith distance is not linear, but is a saturation curve., It is generally agreed that the varia -
tion of scintillation with sec Zo is non-linear when Zo is large, that is, near the horizon.

Radio stars show an essentially similar behavior (fig. 11), which will be discussed
in more detail in Chapter 3, 16.

The variation of scintillation with zenith distance of the light source is sensitive to
frequency. At about 100 Hz, according to Mikesell [1955], scintillation is constant, but below
or above this frequency, it changes greatly with Zo' For stars at zenith distances from 0° to
approximately Zo = 45°, the general form of the distribution of scintillation with frequency
stays about the same. This makes possible the use of Polaris as a scintillation source for
routine observations, At larger zenith distances, however, more low frequency scintillation
(around 100 Hz) is usually present than at higher elevation angles. With increasing elevation
angle, the low frequency fluctuations die out while the high frequency component remains, even
up to the zenith [ Ellison and Seddon, 1952; Butler, 1951a, b; Mikesell, 1951, 1955].

To what degree one is able to predict the dependence of scintillation on elevation

angle is still open to question. It has sometimes been suggested that the proper form of this

10. We avoid in this context terms like elevation, altitude, zenith angle, and angle of incidence

and use solely the two terms zenith distance and elevation angle which are self-explanatory,
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relationship might be used to determine the height of the irregularities causing the scintil-
lation. This in general is not the case. Megaw [1954] found that the r.m. s. brightness fluc-
tuations are a function of zenith distance in the form of f[(sec 20)3/2]. This relation,
however, seems to hold only for telescope apertures larger than about 15 cm and for elevation
angles greater than 30°. For sources nearer to the horizon, the function seems to be more
like (sec Zo)l/z. This might indicate two possibilities: first, that scintillation does not
depend on zenith distance for stars near the horizon, and second, that even near the zenith,
ray theory might not be sufficient for a proper explanation of the effect. But the contribution
from small air packet fluctuations to the observed total brightness fluctuations is made negli-
gible by the aperture integration of all but the smallest astronomical telescopes [Megaw, 1954].
Returning to the somewhat similar situation of radio star scintillation, we note, fol-
lowing Briggs and Parkin [1963], that an increase in zenith distance produces two effects.
These are, first, an increase in the magnitude of the phase perturbations and, second, a gen-
eral change in the geometry of the light paths. The latter means a more marked dependence
on diffraction processes, about which more will be said later. It could be that at greater
zenith distances anisotropy plays an increasing role, and this might introduce yet another var-
iable, Protheroe [1955], similarly, found that the variations of scintillation modulation with

zenith distance and with aperture were interrelated so that the variation with zenith distance

depended on the aperture and vice versa.
3.7. Scintillation as a function of site elevation and latitude

Scintillation measurements are carried out frequently for selecting sites for astro-
nomical observatories, tracking stations, and the like, Quite often, such measurements are
empirical in nature and consist of recording the brightness fluctuations of a given star such as
Polaris, which is chosen frequently because of its relatively fixed position in the sky. More
details on site selection are found in Wimbush's report [1961].

If scintillation were due to turbulences in the atmosphere at large, it should tend to
become less at high-altitude observation sites. This, to some extent, has been confirmed in
observations by Mikesell, Hoag, and Hall [1951] and by Siedentopf and Elsdsser [1954] =
Mikesell and co-workers, comparing scintillation in Washington, D. C. (86 meters above sea
level), and Flagstaff, Arizona (2210 m), found that at the lower elevation the visual image
appears fuzzy and pulsating; at the higher elevation the image was relatively sharp but the

diffraction pattern is distracting.

11. In agreement with Sir Isaac Newton, who said that celestial telescopes should be set up on
high places,''... for the air through which we look at the stars is in perpetual tremor, as
may be seen by the tremulous motion of shadows cast from high towers and by the twink-
ling of fix'd stars... . The only remedy is a most serene and quiet air such as may

perhaps be found on the tops of the highest mountains above the grosser clouds."
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In contrast, Anderson [ 1942] and Irwin [1955] found that the average boiling observed
at Barstow, on the floor of the Mojave Valley in California, was not significantly different
from that at the Mount Wilson or Palomar Observatories, an observation which, as we will
see, seems to contradict a theoretical prediction by Reiger [1962]. Scintillation, in short,
tends to decrease with altitude, but the effect of altitude often does not seem to be as great as
one might expect, perhaps because mountains can carry up turbulence to great heights,

In particular deep valleys affect the seeing [Williams, 1954d]. This is because cold
air, being heavier than warm air, tends to flow down toward the bottom of the valley where it
accumulates, undergoing varying undulations and partial mixing, especially during cooling off
at night. Above this cold air reservoir, the temperature of the air increases with height, fre-
quently attaining a maximum at a height intermediate between the level of the valley floor and
crests of the valley walls. Curiously enough, southern slopes, if at least 50 m above adjoin-
ing plains, give good seeing, better than the top of a mountain within a mountainous region or
even the top of an isolated mountain [Kiepenheuer, 1962].

As far as the influence of altitude on a smaller scale is concerned, Biberman [1963]
mentions work done by the Naval Ordnance Test Station at China Lake, California. There it
was found that missile tracking theodolites in the desert should be 7.5 m high to escape boil.
Towers higher than this brought little advantage, and 4.5 m was not high enough. On the
other hand, Kiepenheuer [1962] recommends a tower height of more than 20 m above the
ground. Becker [1961] showed that a tracking camera 10m above ground level yields, during
periods of atmospheric turbulence, nearly a threefold increase in optical resolution.

Not much is known about the effect of geographical location on scintillation. Anderson
[1942] mentions that in southern California most frequently sharp diffraction patterns with two
well defined rings were seen; only on a few nights did the observers find the pattern completely
blurred out and markedly enlarged. In theEast, within 200 miles of Washington, however,
clear, sharply defined diffraction patterns could rarely be seen and seldom could one observe
more than one or two rings. During the first clear night or two after a storm, the diffraction
pattern was always completely blurred out.

In the tropics, Jones [1950] claims most of the stars do not scintillate, at least not

when observed with the naked eye,
3.8. Color scintillation

The term color scintillation refers to the apparent, rapid change in color of a star,
This phenbmenon, sometimes called '"spectral drift" of starlight, has been observed already
by Kepler, Arago, and Lord Rayleigh. ' Details are found in publications by Pernter and Exner
[1922], Humphreys [1940], Minnaert [1950], Zwicky [1950], and Gardiner and co-workers
[1956].
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Figure 12

Color scintillometer after Ellison., 1 - prism mounted in
front of telescope objective. 2 - star spectrum. 3 - rotating

square prism., 4 - eyepiece,
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Color scintillation is a common phenomenon. When we look at a scintillating star,
either with the unaided eye or through a small telescope, the "white' image which we see is,
in fact, composed of a succession of colors changing at such a high frequency that the eye
cannot easily distinguish them. However, it is possible to separate these colors by providing
some kind of a "time-base'", The simplest way, following Varley [1950] and Ellison [1950] ,
is to look at a star through a small, hand-held telescope and to rapidly move the front-end of
the instrument, describing a circle. The star image will then likewise be drawn into a circle,
and if scintillation is appreciable, the circle will be non-uniform both in brightness and color.

More convenient to use is the Montigny scintillometer, which is simply a thick plane-
parallel plate mounted inside the telescope and tilted slightly so that the normal to the plate
makes a small angle with the optic axis of the telescope. When the plate is caused to spin
about the optic axis at about 5 to 10 rps, the star image is smeared out into a circle and the
light is separated into many-colored time elements.

Different is a method originally developed by Respighi [1872], known as the Respighi
spectral band phenomenon, and further advanced by Ellison [1950], Zwicky [1950], and Ellison
and Seddon [1952]. Ellison and Seddon place a large prism in front of the telescope objective,
focus the spectrum of a bright star onto a ground glass screen, and observe the spectrum
through a magnifying lens. The time base is provided by vibrating the lens in a direction nor-
mal to the optic axis and normal to the direction of dispersion. In this way, the spectrum of
the star is broadened, in the direction normal to the dispersion, into an infinite number of
time-sequential elementary spectra. Because of color scintillation, however, most of these
elementary spectra show some colors missing; some spectra have only the red and violet,
others only the yellow and green, and so on. The total spectrum, hence, appears to be crossed
by dark bands which, as time goes on, seem to be moving across the spectrum. Respighi, who
saw these bands first, already found that sometimes they move from the violet end of the spec-
trum to the red, and sometimes in the opposite direction, possibly depending on the prevailing
wind direction or on other atmospheric conditions.

Ellison [1954], in place of the vibrating magnifying lens, observes the star spectrum
through an eyepiece plus a rotating prism, the axis of rotation being parallel to the direction
of dispersion as shown by figure 12. The inclination of the dark bands relative to the direc-
tion of dispersion gives a measure of the wavelength interval traversed horizontally by a band
in a given time interval.

Color scintillation is most pronounced for stars near the horizon and almost absent
near the zenith [Respighi, 1872; Montigny, 1874; Pernter and Exner, 1922; Zwicky, 1950;
Mikesell, Hoag, and Hall, 1951]. The frequency of the intensity fluctuations at various wave-
lengths is around 50 Hz, that is, about the same as for ordinary white light scintillation.

Whether or not white light and different colors scintillate in phase is still a matter
of controversy. Some authors, for instance Mikesell, Hoag, and Hall [1951] and Ellison and

Seddon [1952], feel that there is little difference in, or good coherence between, the intensity
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fluctuations as recorded at different, nearby wavelengths. On the other hand, the fact that the
phenomenon of color scintillation does exist at all shows that little or no phase coherency can
exist between scintillations in different wavelengths. As Ellison and Seddon 19527 curiously
enough, have pointed out in the same paper just mentioned, the existence of color scintillation
implies that various colors must fluctuate in brightness independently of one another in time;
for if all wavelengths were to scintillate with equal amplitude and in phase, we should expect
to observe changes of apparent brightness in the integrated image but no changes in color.
Sometimes it is assumed that color scint